
JVC SERVICE MANUAL

MICRO COMPONENT SYSTEM

UX-V500V

Contents

Safety precautions	1-2
Important for laser products	1-3
Preventing static electricity	1-4
Disassembly method	1-5
Adjustment method	1-15

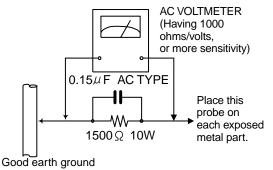
Flow of functional operation
until TOC read 1-19
Maintenance of laser pickup 1-20
Replacement of laser pickup 1-20
Description of major ICs 1-21~34

-Safety Precautions

- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (^(A)) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
- 5. Leakage current check (Electrical shock hazard testing)

After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.

Do not use a line isolation transformer during this check.


Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.).

Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a 1,500 Ω 10W resistor paralleled by a 0.15 μ F AC-type capacitor

between an exposed metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Any voltage measured must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).

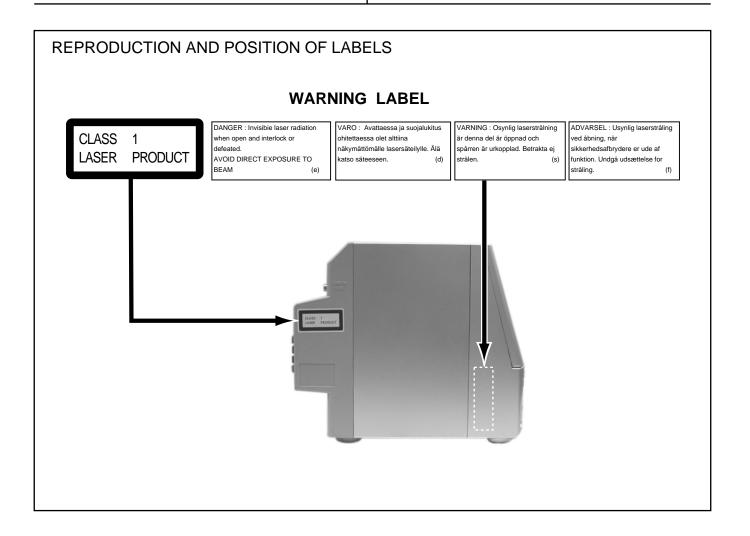
Warning

- 1. This equipment has been designed and manufactured to meet international safety standards.
- 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
- 3. Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of performing repair of this system.

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor (-), diode (+) and ICP (-) or identified by the " Δ " mark nearby are critical for safety.

When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer. (Except the JC version)


Important for laser products

1. CLASS 1 LASER PRODUCT

- 2. DANGER : Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
- **3. CAUTION :** There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
- 4. CAUTION : The compact disc player uses invisible laser radiation and is equipped with safety switches which prevent emission of radiation when the drawer is open and the safety interlocks have failed or are defeated. It is dangerous to defeat the safety switches.
- **5. CAUTION :** If safety switches malfunction, the laser is able to function.
- 6. CAUTION : Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

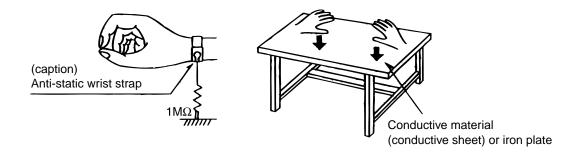
A CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.

VARNING	: Osynlig laserstrålning är denna del är öppnad	ADVARSEL : Usynlig laserstråling ved åbning, når
	och spårren är urkopplad. Betrakta ej strålen.	sikkerhedsafbrydere er ude af funktion. Undgå
VARO	: Avattaessa ja suojalukitus ohitettaessa olet	udsættelse for stråling.
	alttiina näkymättömälle lasersäteilylle.Älä katso	ADVARSEL : Usynlig laserstråling ved åpning, når
	säteeseen.	sikkerhetsbryteren er avslott. unngå utsettelse
		for stråling.

Preventing static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

1.1. Grounding to prevent damage by static electricity

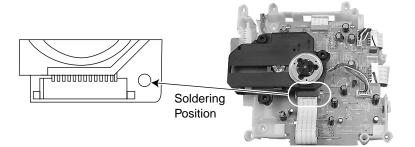

Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as DVD players. Be careful to use proper grounding in the area where repairs are being performed.

1.1.1. Ground the workbench

1. Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

1.1.2. Ground yourself

1. Use an anti-static wrist strap to release any static electricity built up in your body.

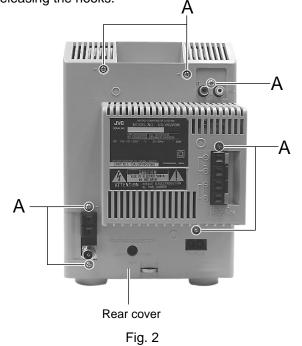


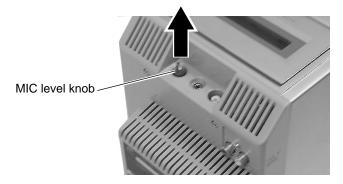
1.1.3. Handling the optical pickup

- 1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
- 2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

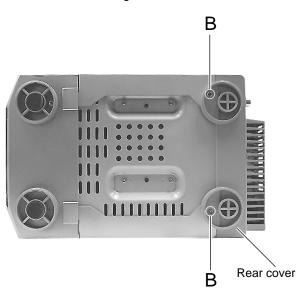
1.2. Handling the traverse unit (optical pickup)

- 1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
- 2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
- 3. Handle the flexible cable carefully as it may break when subjected to strong force.
- 4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it

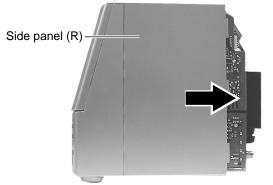


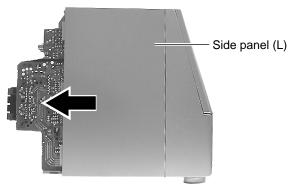

Disassembly method

<Main body>


■ Removing the rear cover (See Fig. 1~3)

- 1. Pull out the MIC level knob on the back of the body.
- 2. Remove the seven screws **A** attaching the rear cover on the back of the body.
- 3. Remove the two screws **B** attaching the rear cover on the bottom of the body.
- 4. Unlock the speaker terminal and the antenna terminal, then remove the rear cover backward with releasing the hooks.

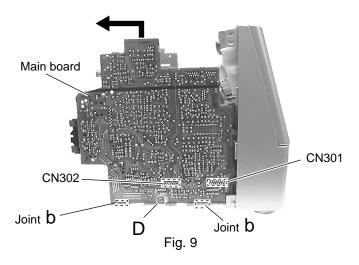


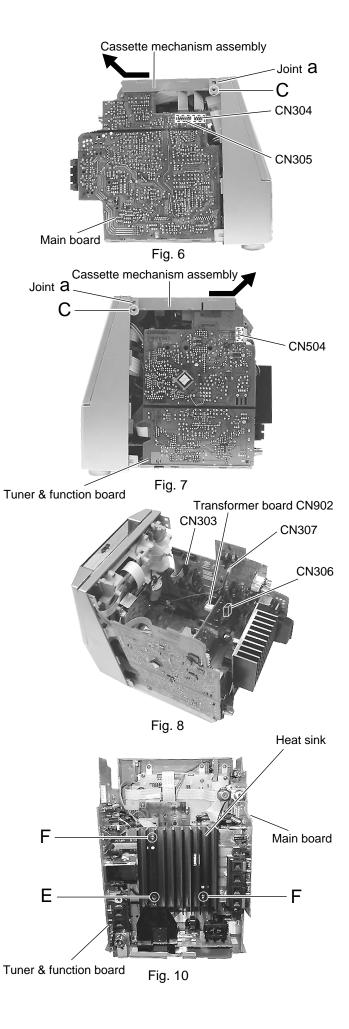


Removing the side panels (See Fig. 4 & 5)

- Prior to performing the following procedure, remove the rear cover.
- 1. Move the side panels in the direction of the arrow and remove them backward.

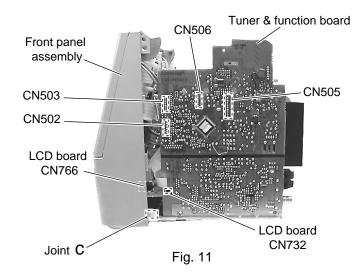
Removing the cassette mechanism assembly (See Fig. 6 & 7)


- Prior to performing the following procedure, remove the rear cover and the side panels.
- 1. Disconnect the card wires from connector CN304 and CN305 on the main board on the left side of the body.
- 2. Disconnect the wire from connector CN504 on the tuner & function board on the right side of the body.
- 3. Remove the two screws **C** attaching the cassette mechanism assembly on both sides of the body and release the two joints **a**.
- 4. Remove the cassette mechanism assembly in the direction of the arrow.


■ Removing the main board / the heat sink (See Fig. 8~10)

- Prior to performing the following procedure, remove the rear cover, the side panels and the cassette mechanism assembly.
- 1. Disconnect the card wire from connector CN303 and the wire from CN306 and CN307 on the main board respectively.
- 2. Disconnect the wire from connector CN902 on the power transformer.
- 3. Remove the screw **D** attaching the main board on the left side of the body.
- 4. Remove the screw **E** and the two screws **F** attaching the heat sink on the back of the body.

Attention: The heat sink can be removed even if the main board is attached to the body.


5. Disconnect connector CN301 and CN302 on the main board from the main body. Remove the main board upward by releasing the two joints **b** in the lower part of the main board.

Removing the front panel assembly (See Fig. 11~13)

- Prior to performing the following procedure, remove the rear cover, the side panels, the cassette mechanism assembly and the main board.
- 1. Disconnect the card wires from connector CN732, CN766 on the LCD board.
- 2. Disconnect the card wire or the wire to connector CN502, CN503, CN505 and CN506 on the tuner & function board respectively.
- 3. Remove the two screws **G** attaching the front panel assembly on the bottom of body.
- 4. Release the two joints **c** on the lower right and left sides of the body. Pull out the front panel assembly toward the front.

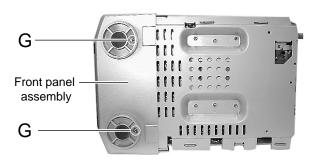


Fig. 12

Front panel assembly

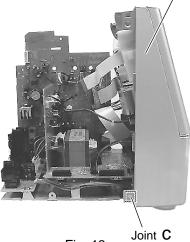
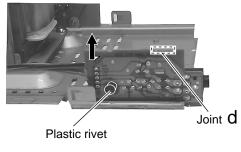
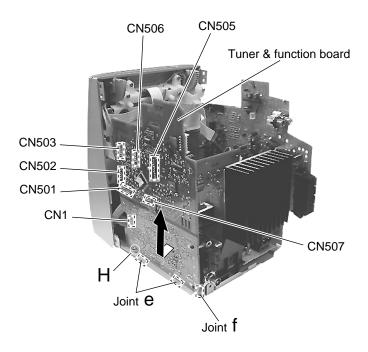



Fig. 13

■ Removing the head phone board (See Fig. 14)

- Prior to performing the following procedure, remove the rear cover, the side panels, the cassette mechanism assembly, the main board and the front panel assembly.
- 1. Remove the plastic rivet attaching the head phone board and release the joint **d**.

Removing the tuner & function board (See Fig. 15)


- Prior to performing the following procedure, remove the rear cover, the side panels and the cassette mechanism assembly.
- 1. Disconnect the each wires to connector CN1, CN501, CN502, CN503, CN505, CN506, CN507 on the tuner & function board.
- 2. Remove the screw **H** attaching the tuner & function board.
- 3. Release the two joints **e** and the joint **f** of the tuner & function board.

Removing the power transformer (See Fig. 16)

- Prior to performing the following procedure, remove the rear cover, the side panels and the cassette mechanism assembly.
- 1. Disconnect the wire to connector CN902 on the power transformer.
- Disconnect the wire to connector CN901 on the AC supply board.
- 3. Disconnect the wire to connector CN507 on the tuner & function board.
- 4. Remove the four screws I attaching the power transformer.

Removing the AC supply board (See Fig. 16)

- Prior to performing the following procedure, remove the rear cover, the side panels and the cassette mechanism assembly.
- 1. Disconnect the wire to connector CN901 on the AC supply board.
- 2. Remove the screw **E** attaching the heat sink on the back of the body (Refer to Fig. 10).
- 3. Remove the two screws **J** attaching the AC supply board.
 - Attention: To remove the AC supply board efficiently, remove the main board in advance.

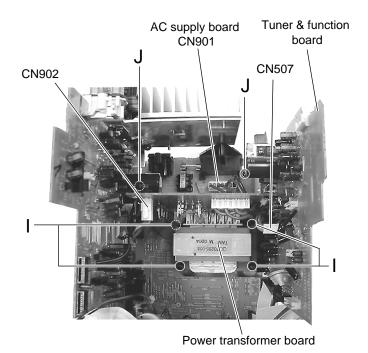


Fig. 16

<Cassette mechanism assembly>

• Prior to performing the following procedure, remove the rear cover, the side panels and the cassette mechanism assembly.

■ Removing the Opt. Dig. out board (See Fig. 17 & 18)

- 1. Remove the two screws **K** attaching the Opt. Dig. out board on the back of the cassette mechanism assembly.
- 2. Remove the one screw L attaching the Opt. Dig. Out board. Remove the Opt. Dig. out board from the bracket.

Removing the cassette mechanism assembly (See Fig. 17 & 19)

- 1. Press the eject button on the front side of the cassette mechanism assembly to open the cassette door.
- 2. Remove the four screws **M** attaching the cassette mechanism assembly on the back of the assembly.

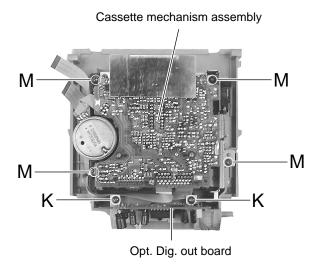
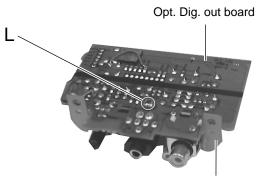



Fig. 17

bracket

Fig. 18

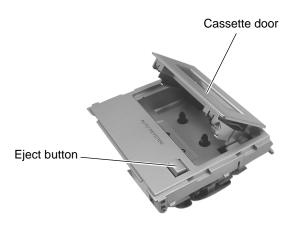
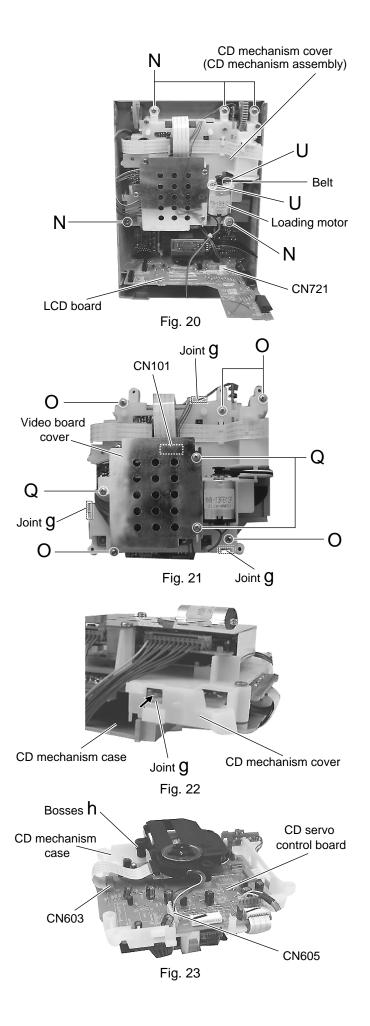


Fig. 19

<Front panel assembly>


• Prior to performing the following procedure, remove the rear cover, the side panels, the cassette mechanism assembly, the main board and the front panel assembly.

Removing the CD mechanism assembly (See Fig. 20~23)

- 1. Disconnect the wire to connector CN721 on the LCD board on the back of the front panel assembly.
- 2. Remove the five screws **N** attaching the CD mechanism cover to the front panel. Remove the CD mechanism cover together with the CD mechanism assembly.
- 3. Disconnect the card wire to connector CN101 on the video board.
- 4. Release the wire from each hook on the CD mechanism cover.
- Remove the five screws O attaching the CD mechanism cover and the CD mechanism case. Release the three joints g of the CD mechanism cover and the CD mechanism case by pushing the joint hooks inward.
- 6. Disconnect the card wire to connector CN603 and the wire to CN605 on the CD servo control board.
- Remove the CD mechanism assembly from the CD mechanism cover by pulling out it from the three bosses h.

■ Removing the loading motor (See Fig. 20)

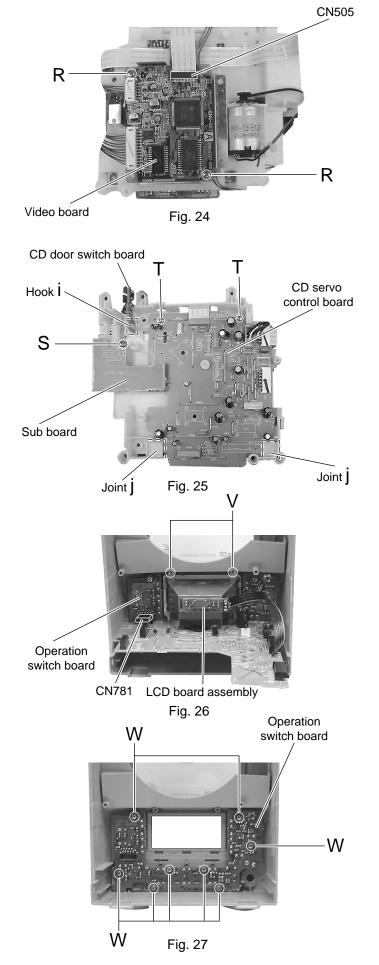
1. Remove the belt and the two screws **U** attaching the loading motor on the back of the front panel assembly.

UX-V500V

■ Removing the video board

(See Fig. 21 & 24)

Reference: There is no need to remove the CD mechanism assembly.

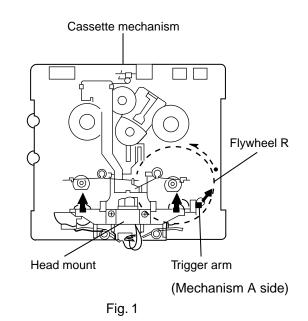

- 1. Disconnect the card wires from connector CN101 on the video board.
- 2. Remove the three screws **Q** attaching the video board cover.
- 3. Remove the two screws **R** attaching the video board.
- Removing the CD servo control board (See Fig. 25)
- Prior to performing the following procedure, remove the CD mechanism assembly.
- 1. Remove the screw **S** attaching the sub board.
- 2. Remove the two screws **T** attaching the CD servo control board.
- 3. Pull out the CD servo control board in the direction of the arrow by releasing the two joints **j**.

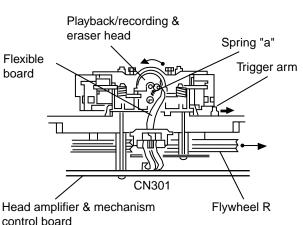
■ Removing the LCD board assembly (See Fig. 26)

- Prior to performing the following procedure, remove the CD mechanism cover (CD mechanism assembly).
- 1. Remove the two screws **V** attaching the LCD board assembly.
- 2. Disconnect connector CN781 on the LCD board assembly from the operation switch board.

Removing the operation switch board (See Fig. 27)

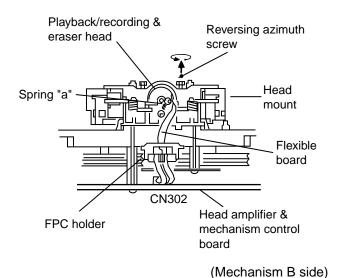
- Prior to performing the following procedure, remove the LCD board assembly.
- 1. Remove the eight screws **W** attaching the operation switch board.

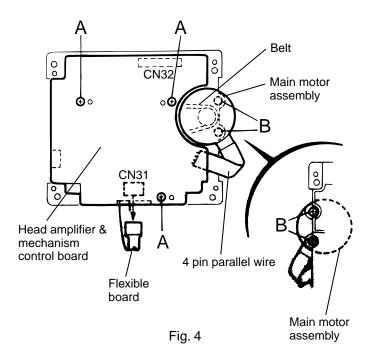

<Cassette mechanism section>

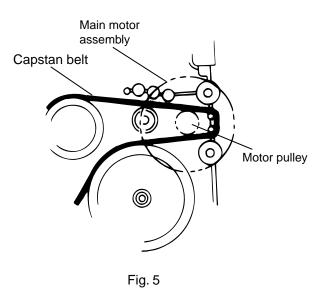

Removing the playback/recording and eraser heads (See Fig. 1~3)

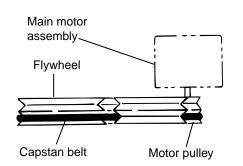
- 1. While shifting the trigger arms seen on the right side of the head mount in the arrow direction, turn the flywheel R in counterclockwise direction until the head mount has gone out with a click. (See Fig. 1)
- 2. When the flywheel R is rotated in counterclockwise direction, the playback head will be turned in counterclockwise direction from the position in Fig. 2 to that in Fig. 3.
- At this position, disconnect the flexible board (outgoing from the playback/recording & eraser head) from the connector CN301 on the head amplifier and mechanism control board.
- 4. After dismounting the FPC holder, remove the flexible board.
- 5. Remove the flexible board from the chassis base.
- 6. Remove the spring "a" from behind the playback/recording & eraser head.
- 7. Loosen the reversing azimuth screw retaining the playback/recording & eraser head.
- 8. Take out the playback/recording & eraser head from the front of the head mount.
- 9. The playback/recording & eraser heads should also be removed similarly according to Steps 1~8 above.

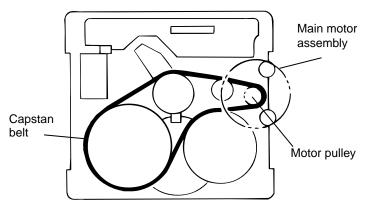
Reassembling the playback/recording and eraser heads (See Fig. 2 & 3)


- 1. Reassemble the playback head from the front of the head mount to the position as shown in Fig. 3.
- 2. Fix the reversing azimuth screw.
- Set the spring "a" from behind the playback/ recording & eraser head.
- 4. Attach the flexible board to the chassis base, and fix it with the FPC holder as shown in Fig. 3.
- 5. The playback/recording & eraser heads should also be reassembled similarly according to Steps 1~4 above.


(Mechanism A side)


Removing the head amplifier and mechanism control board (See Fig. 4)


- 1. Remove the cassette mechanism assembly.
- 2. After turning over the cassette mechanism assembly, remove the three screws **A** retaining the head amplifier and mechanism control board.
- 3. Disconnect the connectors CN32 on the board and the connectors CN1 on both the right and left side reel pulse boards.
- 4. When necessary, remove the 4 pin parallel wire soldered to the main motor.



■ Removing the main motor assembly (See Fig. 4~6)

- 1. Remove the two screws **B** retaining capstan motor assembly. (See Fig. 5)
- 2. While raising the capstan motor, remove the capstan belts from the motor pulley. (See Fig. 6)
 - **Caution:** Be sure to handle the capstan belts so carefully that these belts will not be stained by grease and other foreign matter. Moreover, these belts should be hand while referring to the capstan belt hanging method in Fig. 6 and 7.

UX-V500V

■ Removing the flywheel (See Fig. 8 & 9)

- 1. Remove the head amp. and mechanism control board.
- 2. Remove the capstan motor assembly.
- 3. After turning over the cassette mechanism, remove the slit washers "a" and "b" fixing the capstan shafts R and L, and pull out the flywheels R and L respectively from behind the cassette mechanism.

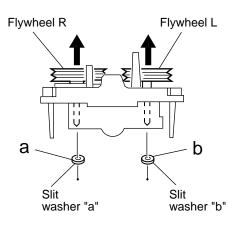


Fig. 8

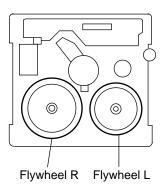
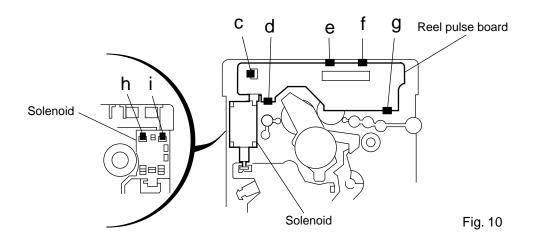



Fig. 9

Removing the reel pulse board and solenoid (See Fig. 10)

- 1. Remove the five pawls (**c**, **d**, **e**, **f**, **g**) retaining the reel pulse board.
- 2. From the surface of the reel pulse board parts, remove the two pawls **h** and **i** retaining the solenoid.

Adjustment method

Measurement instruments required for adjustment

- 1. Low frequency oscillator This oscillator should have a capacity to output 0dBs to 600Ω at an oscillation frequency of 50Hz-20kHz.
- 2. Attenuator impedance : 600Ω
- 3. Electronic voltmeter
- 4. Distortion meter
- 5. Frequency counter
- 6. Wow & flutter meter
- Test tape VT703L : Head azimuth VT712 : Tape speed and running unevenness (3kHz)
 - VT724 : Reference level (1kHz)
- Blank tape TYPE I : AC-225 TYPE II : AC-514
- 9. Torque gauge : For play and back tension FWD (TW2111A), REV (TW2121a) and FF/REW (TW2231A)
- 10. Test disc : CTS-1000

Measurement conditions

Power supply voltage : AC110/127V/230V (50/60Hz) Reference output : Speaker : 0.775V/4 Ω : Headphone : 0.077V/32 Ω Reference frequency and input level ------ 1kHz, AUX : -8dBs MIX MIC : -54dBs Input for confirming recording and playback characteristics ------ AUX : -28dBs Measurement output terminal ------ at Speaker J300

X Load resistance ----- 4Ω

• Radio input signal

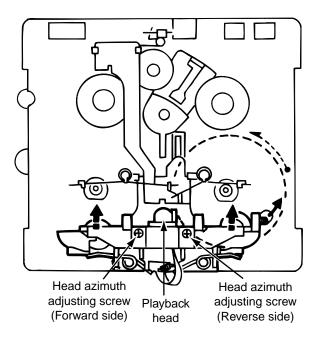
AM frequency	400Hz
AM modulation	30%
FM frequency	400Hz
FM frequency deviation	22.5kHz

• Tuner section

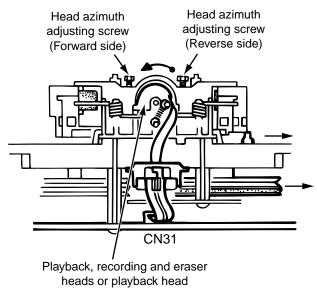
FM Band cover : 87.5 ~ 108MHz MW Band cover : 531 ~ 1,602kHz, 530 ~ 1,710kHz SW Band cover : SW1 2.3 ~ 6.995MHz : SW2 7 ~ 21.85MHz Voltage applied to tuner ------+B : DC5.7V VT : DC 12V Reference measurement output ------26.1mV (0.28V)/ 3 Ω Input positions ------AM : Standard loop antenna

Standard measurement position of volume

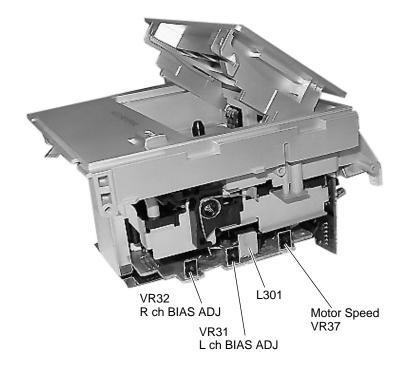
FM : TP1 (hot) and TP2 (GND)


Function switch to Tape
Beat cut switch to cut
Super Bass/ Active hyper Bass to OFF
Bass Treble to Center
Adjustment of main volume to reference output
VOL : 28

• Precautions for measurement


- 1. Apply 30pF and 33k Ω to the IF sweeper output side and 0.082 μ F and 100k Ω in series to the sweeper input side.
- 2. The IF sweeper output level should be made as low as possible within the adjustable range.
- 3. Since the IF sweeper is a fixed device, there is no need to adjust this sweeper.
- 4. Since a ceramic oscillator is used, there is no need to perform any MIX adjustment.
- 5. Since a fixed coil is used, there is no need to adjust the FM tracking.
- 6. The input and output earth systems are separated. In case of simultaneously measuring the voltage in both of the input and output systems with an electronic voltmeter for two channels, therefore, the earth should be connected particularly carefully.
- 7. In the case of BTL connection amp., the minus terminal of speaker is not for earthing. Therefore, be sure not to connect any other earth terminal to this terminal. This system is of an BTL system.
- 8. For connecting a dummy resistor when measuring the output, use the wire with a greater code size.
- 9. Whenever any mixed tape is used, use the band pass filter (DV-12).

Arrangement of adjusting positions


Cassette mechanism section

Cassette mechanism section (Back side)

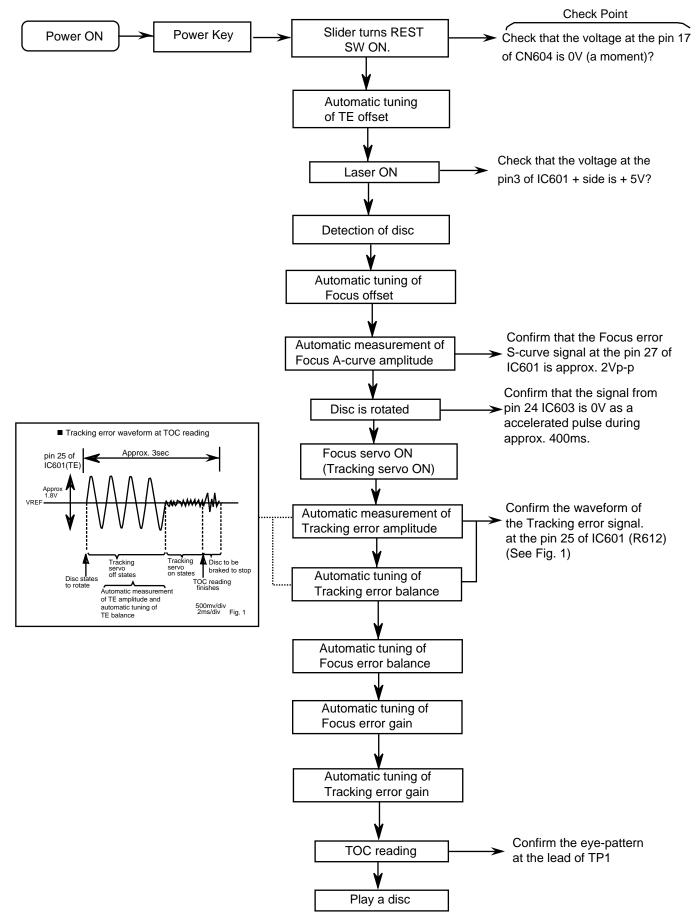
Front panel assembly section

■ Tape Recorder Section

Items	Measurement conditions	Measurement method	Standard Values	Adjusting positions
Confirmation of head angle	Measurement output terminal : Speaker terminal Speaker R	 Playback the test tape VT703L (8kHz). With the recording & playback mechanism, adjust the head azimuth screw so that the forward and reverse output levels become maximum. After adjustment, lock the head azimuth at least by half turn. In either case, this adjustment should be performed in both the forward and reverse directions with the head azimuth screw. 	Maximum output	Adjust the head azimuth screw only when the head has been changed.
Confirmation of tape speed	Test tape : VT712 (3kHz) Measurement output terminal : Headphone terminal	Adjust VR37 so that the frequency counter reading becomes 2,940 ~ 3,090Hz \pm when playing back the test tape VT712 (3kHz) with playback and recording mechanism after ending forward winding of the tape.	Tape speed of deck : 2,940 ~ 3,090Hz	VR37

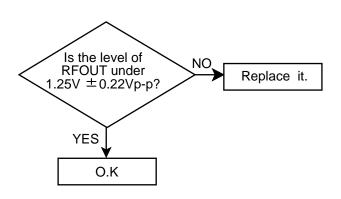
■ Reference Values for Confirmation Items

Items	Items Measurement conditions Measurement method			Adjusting positions
Difference between the forward and reverse speed	Test tape : VT712 (3kHz) Measurement output terminal : Speaker terminal Speaker R (Load resistance:4 Ω) Measurement output terminal : Headphone	When the test tape VT712 (3kHz) has been played back with the recording and playback mechanism at the beginning of forward winding, the frequency counter reading of the difference between both of the mechanism should be 6.0Hz or less.	60Hz or less	Head azimuth screw
Wow & flutter	Test tape : VT712 (3kHz) Measurement output terminal : Headphone terminal	When the test tape VT712 (3kHz) has been played back with the recording and playback mechanism at the beginning of forward winding, the frequency counter reading of wow & flutter should be 0.25% or less (WRMS).	0.25% or less (WRMS)	


Electrical Performance

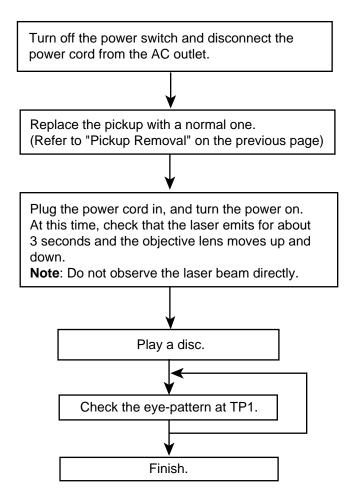
Items	Measurement conditions	Measurement method	Standard Values	Adjusting positions
Adjustment of recording bias current (Reference Value)	 Mode : Forward or reverse mode Recording mode Test tape AC-514 to TYPE II and AC-225 to TYPE I Measurement output terminal Both recording and headphone terminals 	 With the recording and playback mechanism, load the test tapes (AC-514 to TYPE II and AC-225 to TYPE I), and set the mechanism to the recording and pausing conditions in advance. After connecting 100 Ω in series to the recorder head, measure the bias current with a valve voltmeter at both of the terminals. After resetting the [PAUSE] mode, start recording. At this time, adjust VR31 for LcH and VR32 for RcH so that the recording bias current values become 4.0 µ A (TYPE I) and 4.20 µ A (TYPE II). 	AC-225 :4.20 µ A AC-514 :4.0 µ A	L cH :VR31 R cH :VR32
Adjustment of recording and playback frequency characteristics	Reference frequency : 1kHz and 10kHz (REF.: -20dB) Test tape II : AC-514 to TYPE Measurement input terminal : OSC IN	 With the recording and playback mechanism, load the test tapes (AC-514 to TYPE II), and set the mechanism to the recording and pausing condition in advance. While repetitively inputting the reference frequency signal of 1kHz and 10kHz from OSC IN, record and playback the tape. While recording and playing back the test tape in TYPE II, adjust VR31 for LcH and VR32 for RcH so that the output deviation between 1kHz and 10kHz becomes -1dB ± 2dB. 	Output deviation between 1kHz and 10kH :-1dB±2dB	LcH :VR31 RcH :VR32

■ Reference Values for Electrical Function Confirmation Items


Items	Measurement conditions	Measurement method	Standard Values	Adjusting positions
Recording bias frequency	Forward or reverse • Test tape : TYPE II (AC-514) • Measurement terminal BIAS TP on board	 While changing over to and from BIAS 1 and 2, confirm that the frequency is changed. With the recording and playback mechanism, load the test tape. (AC-514 to TYPE II), and set the mechanism to the recording and pausing condition in advance. Confirm that the BIAS TP frequency on the board is 100kHz ± 6kHz. 	100kHz ±6 kHz	
Eraser current (Reference value)	urrent• Recording mode• Test tape• Test tape• Test tape• Recording mode• Test tape• Test tape• TYPE I), and set the mechanism to the		TYPE II : 120 mA TYPE I : 75 mA	

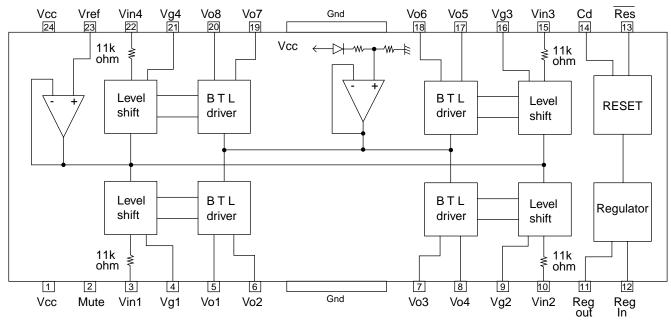
Flow of functional operation until TOC read

Maintenance of laser pickup


- Cleaning the pickup lens Before you replace the pickup, please try to clean the lens with an alcohol soaked cotton swab.
- (2) Life of the laser diode When the life of the laser diode has expired, the following symptoms will appear.
 - 1. The level of RF output (EFM output: amplitude of eye pattern) will below.

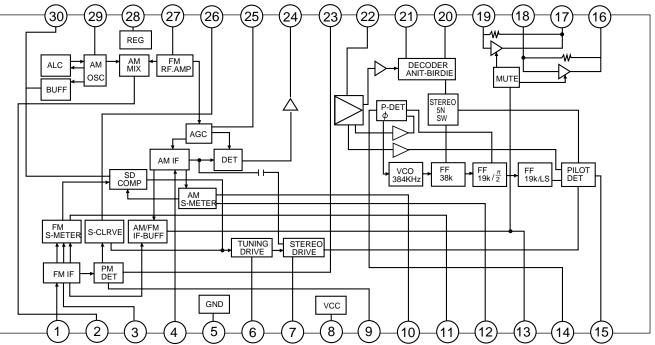
(3) Semi-fixed resistor on the APC board The semi-fixed resistor on the APC board which is attached to the pickup is used to adjust the laser power. Since this adjustment should be performed to match the characteristics of the whole optical block, do not touch the semi-fixed resistor. If the laser power is lower than the specified value, the laser diode is almost worn out, and the laser pickup should be replaced.

If the semi-fixed resistor is adjusted while the pickup is functioning normally, the laser pickup may be damaged due to excessive current.


Replacement of laser pickup

Description of major ICs

LA6541-X (IC602) : Servo driver

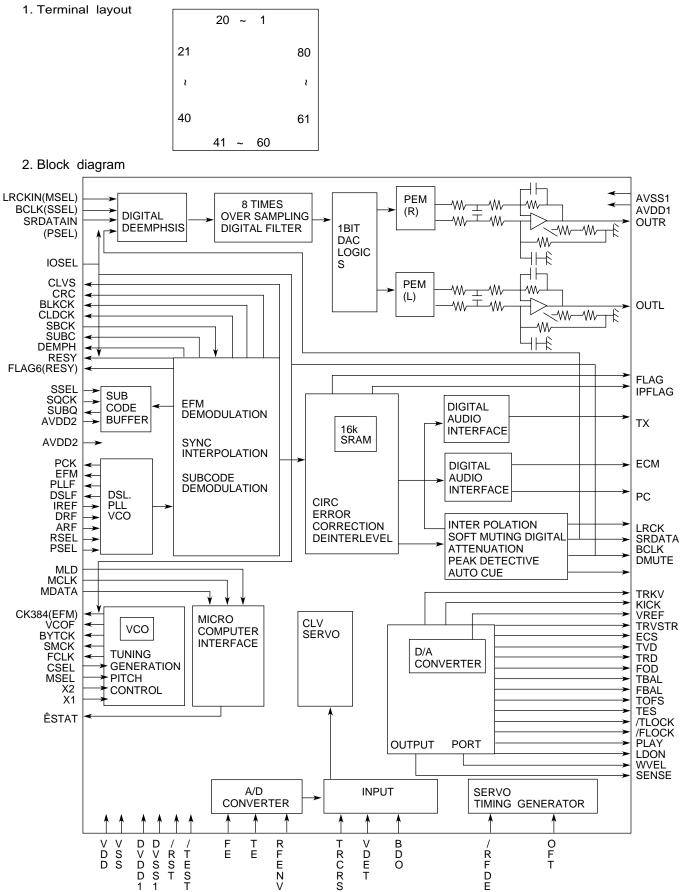

1. Pin layout & block diagram

Pin No.	Symbol	Function				
1	Vcc	Power supply (Shorted to pin 24)				
2	Mute	All BTL amplifier outputs ON/OFF				
3	Vin1	BTL AMP 1 input pin				
4	Vg1	BTL AMP 1 input pin (For gain adjustment)				
5	Vo1	AMP 1 input pin (Non inverting side)				
6	Vo2	BTL AMP 1 input pin (Inverting side)				
7	Vo3	BTL AMP 2 input pin (Inverting side)				
8	Vo4	BTL AMP 2 input pin (Non inverting side)				
9	Vg2	BTL AMP 2 input pin (For gain adjustment)				
10	Vin2	BTL AMP 2 input pin				
11	Reg Out	External transistor collector (PNP) connection. 5V power supply output				
12	Reg In	External transistor (PNP) base connection				
13	Res	Reset output				
14	Cd	Reset output delay time setting (Capacitor connected externally)				
15	Vin3	BTL AMP 3 input pin				
16	Vg3	BTL AMP 3 input pin (For gain adjustment)				
17	Vo5	BTL AMP 3 output pin (Non inverting side)				
18	Vo6	BTL AMP 3 output pin (Inverting side)				
19	Vo7	BTL AMP 4 output pin (Inverting side)				
20	Vo8	BTL AMP 4 output pin (Non inverting side)				
21	Vg4	BTL AMP 4 output pin (For gain adjustment)				
22	Vin4	BTL AMP 4 output pin				
23	Vref	Level shift circuit's reference voltage application				
24	Vcc	Power supply (Shorted to pin 1)				

■LA1838 (IC1) : FM AM IF amp & Detector, FM MPX decoder

1. Block diagram

Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	FM IN	I	This is an input terminal of FM IF signal.	16	L OUT	0	Left channel signal output.
2	AM MIX	0	This is an output terminal for AM mixer.	17	R OUT	0	Right channel signal output.
3	FM IF	I	Bypass of FM IF	18	L IN	I	Input terminal of the left channel post AMP.
4	AM IF	I	Input of AM IF Signal.	19	R IN	Ι	Input terminal of the right channel post AMP.
5	GND	-	This is the device ground terminal.	20	RO	0	Mpx Right channel signal output.
6	TUNED	0	When the set is tuning, this terminal becomes "L".	21	LO	0	Mpx Left channel signal output.
7	STEREO	0	Stereo indicator output. Stereo "L", Mono : "H"	22	IF IN	I	Mpx input terminal
8	VCC	-	This is the power supply terminal.	23	FM OUT	0	FM detection output.
9	FM DET	-	FM detect transformer.	24	AM DET	0	AM detection output.
10	AM SD	-	This is a terminal of AM ceramic filter.	25	AM AGC	I	This is an AGC voltage input terminal for AM
11	FM VSM	0	Adjust FM SD sensitivity.	26	AFC	_	This is an output terminal of voltage for FM-AFC.
12	AM VSM	0	Adjust AM SD sensitivity.	27	AM RF	I	AM RF signal input.
13	MUTE	I/O	When the signal of IF REQ of IC121 (LC72131) appear, the signal of FM/AM IF output. //Muting control input.	28	REG	0	Register value between pin 26 and pin 28 desides the frequency width of the input signal.
14	FM/AM	I	Change over the FM/AM input. "H" : FM, "L" : AM	29	AM OSC	_	This is a terminal of AM Local oscillation circuit.
15	MONO/ST	0	Stereo : "H", Mono: "L"	30	OSC BUFFER	0	AM Local oscillation Signal output.


■ UPD780053GC-031 (IC503) : CD/VCD control

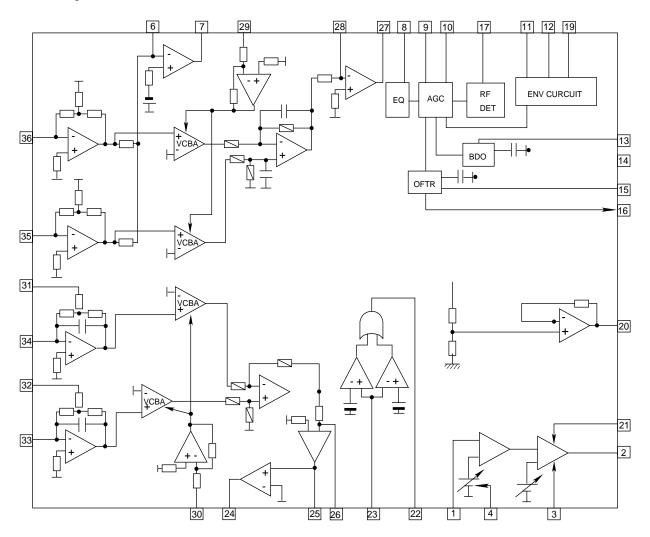
1. Terminal layout

	40	~	21	
41				20
1				2
60				1
	61	~	80	۲

Pin No.	Symbol	I/O	Function
1	MLD	0	Micon command load signal output
2	MDATA	0	Micon command data output
3	MCLK	0	Micon command clock signal output (Data is latched at signal's rising point)
4	AVSS	-	GND
5	REST	I	Rest switch input
6	XRST	0	Reset signal input (L : Reset)
7	A-REF1	-	Connect to Vdd
8	SUBQ	I	Sub Q code input
9	NC	-	Non connection
10	SQCK	0	Outside clock for sub-code Q resistor output
11	KCMD	-	GND
12	MSTAT	-	GND
13	KCLK	0	CD Micon control commend clock (Tuner : L)
14	OSOFF		OSD Input of deletion demand signal of display (L : OSD Off)
15	MRDY		CD Micon control Detection of state of command possible reception
16	NC	-	Non connection
17	SRDATA	0	Serial data output terminal
18	SRCLK	0	Serial clock output terminal
19~32	NC	-	Non connection
33	VSS1	-	GND
34~39	NC	-	Non connection
40	FCD	0	Function CD output terminal
41	MREQ	0	Transfer request data to IC111
42	VCDRST	0	VCD Reset signal output terminal
43	VCDEMP	0	VCD empty signal output terminal
44~59	NC	-	Non connection
60	CDMRST	0	CD Mechanism reset signal output terminal
61	STAT	I	CD Status signal input terminal
62	HREC		
63	HRDY		
64~66	NC	-	Non connection
67	V3S0	-	GND
68	VDD1	-	Connect to Vdd
69	X2	I	Input of X'tal oscillation circuit
70	X1	0	Output of 16.9344MHz X'tal oscillation circuit
71	IC	-	GND
72	XT2	-	Non connection
73	XT1	-	Connect to Vdd
74	VDD0	-	Connect to Vdd
75	AVREF0	-	GND
76~78	NC	-	Non connection
79	DMUTE	-	Connected to GND
80	DRMUTE	0	All BTL amplifier outputs ON/OFF

MN35510AL (IC603) : Digital servo & Digital signal processor

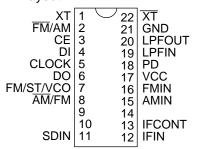
3. Description

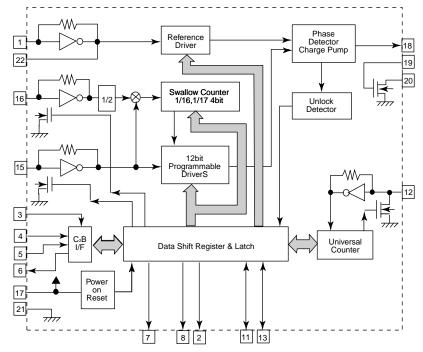

Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	BCLK	0	Not used	41	TES	0	Tracking error shunt signal output (H : shunt)
2	LRCK	0	Not used	42	PLAY	—	Not used
3	SRDATA	0	Not used	43	WVEL	-	Not used
4	DVDD1	-	Power supply (Digital)	44	ARF	Ι	RF signal input
5	DVSS1	-	Connected to GND	45	IREF	Ι	Reference current input pin
6	ТΧ	0	Digital audio interface output	46	DRF	Ι	Bias pin for DSL
7	MCLK	I	Micom command clock signal input (Data is latched at signal's rising point)	47	DSLF	I/O	Loop filter pin for DSL
8	MDATA	Ι	Micom command data input	48	PLLF	I/O	Loop filter pin for PLL
9	MLD	Ι	Micom command load signal input	49	VCOF	—	Not used
10	SENSE	0	Sense signal output	50	AVDD2	-	Power supply (Analog)
11	FLOCK	0	Focus lock signal output Active : Low	51	AVSS2	-	Connected to GND (Analog)
12	TLOCK	0	Tracking lock signal output Active : Low	52	EFM	-	Not used
13	BLKCK	0	sub-code - block - clock signal output	53	PCK	-	Not used
14	SQCK	Ι	Outside clock for sub-code Q resistor input	54	PDO	—	Not used
15	SUBQ	0	Sub-code Q - code output	55	SUBC	_	Not used
16	DMUTE	Ι	Connected to GND	56	SBCK	-	Not used
17	STATUS	0	Status signal (CRC, CUE, CLVS, TTSTOP, ECLV, SQOK)	57	VSS	I	Connected to GND (for X'tal oscillation circuit)
18	RST	Ι	Reset signal input (L : Reset)	58	XI	Ι	Input of 16.9344MHz X'tal oscillation circuit
19	SMCK	Ι	Not used	59	X2	0	Output of X'tal oscillation circuit
20	PMCK	-	Not used	60	VDD	—	Power supply (for X'tal oscillation circuit)
21	TRV	0	Traverse enforced output	61	BYTCK	-	Not used
22	TVD	0	Traverse drive output	62	CLDCK	_	Not used
23	PC	-	Not used	63	FLAG	—	Not used
24	ECM	0	Spindle motor drive signal (Enforced mode output) 3-State	64	IPPLAG	_	Not used
25	ECS	0	Spindle motor drive signal (Servo error signal output)	65	FLAG	I	Not used
26	KICK	0	Kick pulse output	66	CLVS	-	Not used
27	TRD	0	Tracking drive output	67	CRC	-	Not used
28	FOD	0	Focus drive output	68	DEMPH		Not used
29	VREF	I	Reference voltage input pin for D/A output block (TVD, FOD, FBA, TBAL)	69	RESY		Not used
30	FBAL	0	Focus Balance adjust signal output	70	IOSEL	-	pull up
31	TBAL	0	Tracking Balance adjust signal output	71	TEST	—	pull up
32	FE	Ι	Focus error signal input (Analog input)	72	AVDD1	I	Power supply (Digital)
33	TE	Ι	Tracking error signal input (Analog input)	73	OUT L	0	Lch audio output
34	RF ENV	Ι	RF envelope signal input (Analog input)	74	AVSS1	-	Connected to GND
35	VDET	Ι	Vibration detect signal input (H : detect)	75	OUT R	0	Rch audio output
36	OFT	Ι	Off track signal input (H : off track)	76	RSEL	I	pull up
37	TRCRS	Ι	Track cross signal input	77	CSEL	I	Connected to GND
38	RFDET	Ι	RF detect signal input (L : detect)	78	PSEL	-	Connected to GND
39	BDO	Ι	BDO input pin (L : detect)	79	MSEL	-	Connected to GND
40	LDON	0	Laser ON signal output (H : on)	80	SSEL	—	Pull up

■ AN8806SB-W (IC601) : RF & Servo amp.

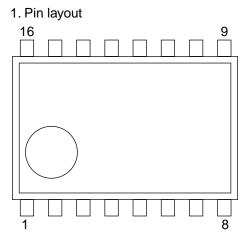
1. Pin layout

PD 1	36 PDAC
LD 2	35 PDBD
LDON 3	34 PDF
LDP 4	33 PDE
VCC 5	32 PDER
RF- 6	31 PDFR
RF OUT 7	30 TBAL
RF IN 8	29 FBAL
C.AGC 9	28 EF-
ARF 10	27 EF OUT
C.ENV 11	26 TE-
C.EA 12	25 TE OUT
CS BDO 13	24 CROSS
BDO 14	23 TE BPF
CS BRT 15	22 VDET
OFTR 16	21 LD OFF
/NRFDET 17	20 VREF
GND 18	19 ENV


2. Block diagram

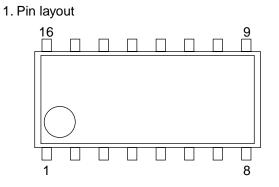

Pin No.	Symbol	I/O	Function
1	PD	Ι	APC amp. Input terminal
2	LD	0	APC amp. Output terminal
3	LD ON	I	LD ON/OFF control terminal
4	LDP		Connect to GND
5	VCC		Power supply
6	RF-	Ι	RF amp. Reversing input terminal
7	RF OUT	0	RFamp. Output terminal
8	RF IN	Ι	AGC input terminal
9	C.AGC	I/O	AGC loop filter connection terminal
10	ARF	0	ARF output terminal
11	C.ENV	I/O	RF detection capacity connection terminal
12	C.EA	I/O	HPF-amp capacity connection terminal
13	CS BDO	I/O	Capacity connection terminal for RF discernment side envelope detection
14	BDO	0	BDO output terminal
15	CS BRT	I/O	Capacity connection terminal for RF discernment side envelope detection
16	OFTR	0	OFTR output terminal
17	/NRFDET	0	RFDET output terminal
18	GND		Connect to GND
19	ENV	0	3TENV output terminal
20	VREF	0	VREF output terminal
21	LD OFF		APC OFF control terminal
22	VDET	0	VDET output terminal
23	TE BPF	Ι	VDET input terminal
24	CROSS	0	CROSS output terminal
25	TE OUT	0	TE amp. Output terminal
26	TE-	Ι	TE amp. Reversing input terminal
27	FE OUT	0	FE amp. output terminal
28	FE-	1	FE amp. Reversing input terminal
29	FBAL	Ι	F. BAL control terminal
30	TBAL	Ι	T. BAL control terminal
31	PDFR	I/O	I-V amp conversion resistance adjustment terminal
32	PDER	I/O	I-V amp conversion resistance adjustment terminal
33	PDF	Ι	I-V amp input terminal
34	PDE	I	I-V amp input terminal
35	PD BD	I	I-V amp input terminal
36	PD AC	Ι	I-V amp input terminal

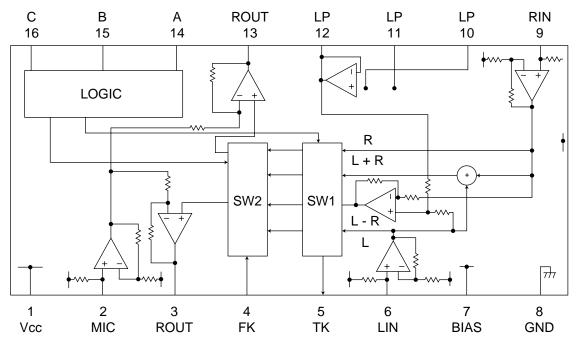
LC72136N (IC2) : PLL frequency synthesizer




2. Block diagram

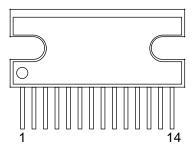
Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	ХТ	Ι	X'tal oscillator connect (75kHz)		IFIN	Ι	IF counter signal input
2	FM/AM	0	LOW : FM mode	13	IFCONT	0	IF signal output
3	CE	Ι	When data output/input for 4 pin (input)	14		-	Not use
			and 6 pin (output) : H				
4	DI	Ι	Input for receive the serial data from	15	AMIN	Ι	AM Local OSC signal output
			controller				
5	CLOCK	Ι	Sync signal input use	16	FMIN	Ι	FM Local OSC signal input
6	DO	0	Data output for Controller	17	VCC	-	Power supply (VDD = 4.5-5.5V)
			Output port				When power ON : Reset circuit move
7	FM/ST/VCO	0	"Low" : MW mode	18	PD	0	PLL charge pump output (H : Local OSC
							frequency Height than Reference frequency.
							L : Low Agreement : Height impedance)
8	AM/FM	0	Open state after the power on reset	19	LPFIN	Ι	Input for active lowpassfilter of PLL
9	LW	I/O	Input/output port	20	LPFOUT	0	Output for active lowpassfilter of PLL
10	MW	I/O	Input/output port	21	GND	-	Connected to GND
11	SDIN	I/O	Data input/output	22	ΧT	I	X'tal oscillator (75KHz)

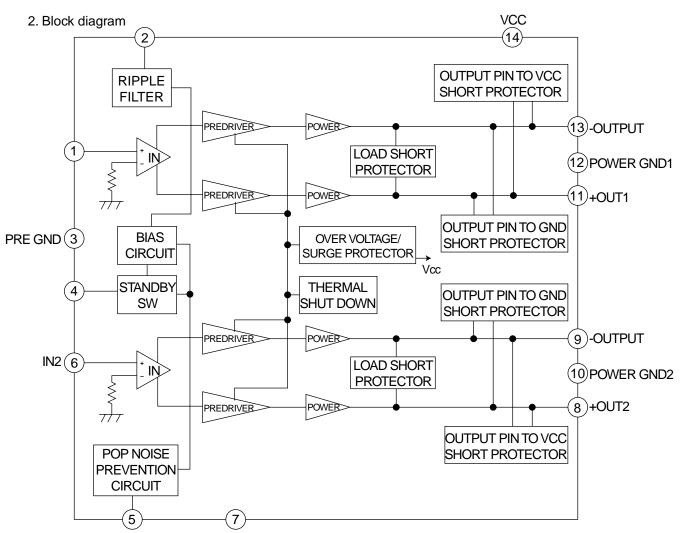

■ BU9253FS-X (IC501) : Echo



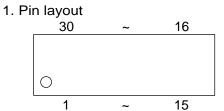
Pin No.	Symbol	I/O	Function
1	GND	-	GND terminal
2	ECHO VR		DC control terminal of echo level
3	BIAS	-	DC bias terminal of analog section
4	DAINT IN	Ι	D/A convert input terminal
5	DAINT OUT	0	D/A convert output terminal
6	DALPF IN	I	LPF input terminal of DA section
7	DALPF OUT	0	LPF output terminal of DA section
8	MIX OUT O		Mixing signal output
9	MIX IN I		Input terminal for mixing amp
10	ADLPF IN I		LPF input terminal of AD section
11	ADLPF OUT	0	LPF output terminal of AD section
12	ADINT OUT	0	A/D convert output terminal
13	ADINT IN	Ι	A/D convert input terminal
14	VCC	-	Vcc terminal
15	MUTE I		Mute control terminal
16	6 CR -		CR terminal for oscillator

■ BA3838F-X (IC502) : Mic mix, MPX, KARAOKE

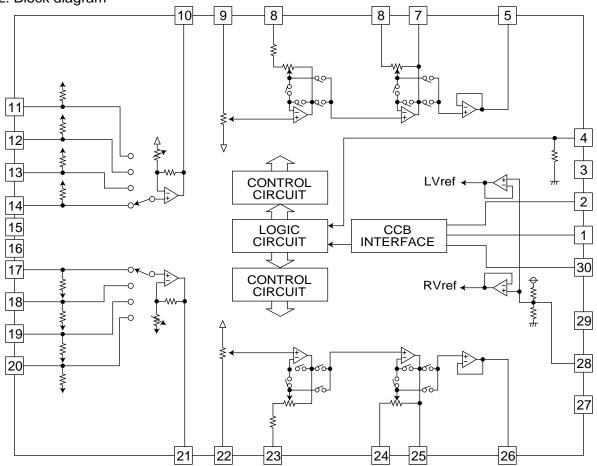

2. Block diagram



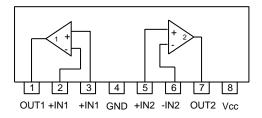
Pin No.	Symbol	Function			
1	Vcc	Power supply			
2	MIC IN	Microphone mixing input			
3	LOUT	Channel L output			
4	FK	Accepts signal from the key controller			
5	TK	Outputs signal to the key controller			
6	LIN	Channel L input			
7	BIAS	Signal bias			
8	GND	GND			
9	RIN	Channel R input			
10	LPF1	Connects to LPF time constant element			
11	LPF2	Connects to LPF time constant element			
12	LPF3	LPF output			
13	ROUT	Channel R output			
14	CONTA	Mode select input A			
15	CONTB	Mode select input B			
16	CONTC	Mode select input C			


■ LA4628 (IC300) : Power amp

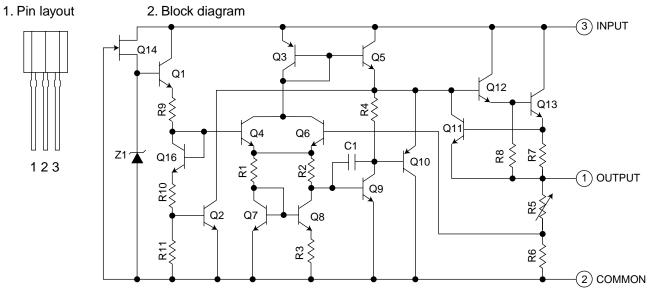
1. Pin layout



■LC75342 (IC302) : E. volume

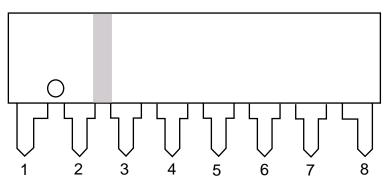


2. Block diagram



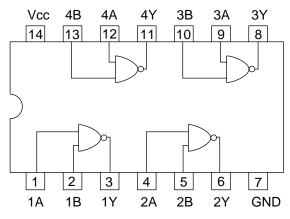
Pin No.	Symbol	Function		Symbol	Function
1	DI	Serial data & clock input terminal		NC	Non connection
2	CE	Chip enable terminal	17	R1	Input signal terminal
3	VSS	GND terminal	18	R2	Input signal terminal
4	TEST	Test terminal for E. volume	19	R3	Input signal terminal
5	LOUT	Volume + equalizer output terminal	20	R4	Input signal terminal
6	LBASS2	C & R connection terminal for BPF	21	RSEL0	Input selector output terminal
7	LBASS1	C & R connection terminal for BPF	22	RIN	Volume + equalizer input terminal
8	LTRE	C connection terminal for Treble band	23	RTRE	C connection terminal for Treble band
9	LIN	Volume + equalizer input terminal	24	RBASS1	C & R connection terminal for BPF
10	LSEL0	Input selector output terminal	25	RBASS2	C & R connection terminal for BPF
11	L4	Input signal terminal	26	ROUT	Volume + equalizer output terminal
12	L3	Input signal terminal	27	NC	Non connection
13	L2	Input signal terminal	28	Vref	Reference voltage
14	L1	Input signal terminal	29	VDD	Power supply terminal
15	NC	Non connection	30	CL	Serial data & clock input terminal

■ BA15218N (IC301) : Dual ope. amp.

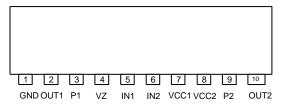


KIA78S06P-T (IC703) : Regulator

■ NJM4580L (IC531) : Mic amplifier


1. Pin layout

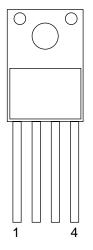
No.	Function
1.	A OUTPUT
2.	A-INPUT
3.	A+INPUT
4.	V-
5.	B+INPUT
6.	B-INPUT
7.	B OUTPUT
8.	V+


■ TC74HC00AF-X (IC583) : CMOS

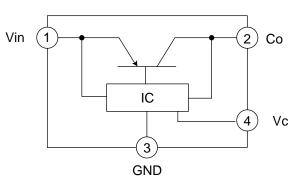
1. Pin layout & Block diagram

■ LB1641 (IC303) : DC motor driver

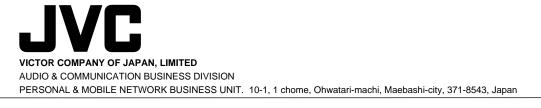
1. Pin layout



2. Pin function


Inp	out	Out	put	Mode
IN1	IN2	OUT1	OUT2	Mode
0	0	0	0	Brake
1	0	1	0	CLOCKWISE
0	1	0	1	COUNTER-CLOCKWISE
1	1	0	0	Brake

■ PQ05RD21 (IC511) : Regulator


1. Pin function

2. Block diagram

< MEMO >

